Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Ecol Appl ; 33(8): e2918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688800

RESUMO

Mark-recapture surveys are commonly used to monitor translocated populations globally. Data gathered are then used to estimate demographic parameters, such as abundance and survival, using Jolly-Seber (JS) models. However, in translocated populations initial population size is known and failure to account for this may bias parameter estimates, which are important for informing conservation decisions during population establishment. Here, we provide methods to account for known initial population size in JS models by incorporating a separate component likelihood for translocated individuals, using a maximum-likelihood estimation, with models that can be fitted using either R or MATLAB. We use simulated data and a case study of a threatened lizard species with low capture probability to demonstrate that unconstrained JS models may overestimate the size of translocated populations, especially in the early stages of post-release monitoring. Our approach corrects this bias; we use our simulations to demonstrate that overestimates of population size between 78% and 130% can occur in the unconstrained JS models when the detection probability is below 0.3 compared to 1%-8.9% for our constrained model. Our case study did not show an overestimate; however accounting for the initial population size greatly reduced error in all parameter estimates and prevented boundary estimates. Adopting the corrected JS model for translocations will help managers to obtain more robust estimates of the population sizes of translocated animals, better informing future management including reinforcement decisions, and ultimately improving translocation success.


Assuntos
Espécies em Perigo de Extinção , Animais , Densidade Demográfica , Probabilidade
2.
Mol Ecol Resour ; 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37332137

RESUMO

A high-quality reference genome can be a valuable resource for threatened species by providing a foundation to assess their evolutionary potential to adapt to future pressures such as environmental change. We assembled the genome of a female hihi (Notiomysits cincta), a threatened passerine bird endemic to Aotearoa New Zealand. The assembled genome is 1.06 Gb, and is of high quality and highly contiguous, with a contig N50 of 7.0 Mb, estimated QV of 44 and a BUSCO completeness of 96.8%. A male assembly of comparable quality was generated in parallel. A population linkage map was used to scaffold the autosomal contigs into chromosomes. Female and male sequence coverage and comparative genomics analyses were used to identify Z-, and W-linked contigs. In total, 94.6% of the assembly length was assigned to putative nuclear chromosome scaffolds. Native DNA methylation was highly correlated between sexes, with the W chromosome contigs more highly methylated than autosomal chromosomes and Z contigs. 43 differentially methylated regions were identified, and these may represent interesting candidates for the establishment or maintenance of sex differences. By generating a high-quality reference assembly of the heterogametic sex, we have created a resource that enables characterization of genome-wide diversity and facilitates the investigation of female-specific evolutionary processes. The reference genomes will form the basis for fine-scale assessment of the impacts of low genetic diversity and inbreeding on the adaptive potential of the species and will therefore enable tailored and informed conservation management of this threatened taonga (treasured) species.

3.
Mol Ecol ; 32(14): 4031-4043, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173827

RESUMO

Telomeres are well known for their associations with lifespan and ageing across diverse taxa. Early-life telomere length can be influenced by developmental conditions and has been shown positively affect lifetime reproductive success in a limited number of studies. Whether these effects are caused by a change in lifespan, reproductive rate or perhaps most importantly reproductive senescence is unclear. Using long-term data on female breeding success from a threatened songbird (the hihi, Notiomystis cincta), we show that the early-life telomere length of individuals predicts the presence and rate of future senescence of key reproductive traits: clutch size and hatching success. In contrast, senescence of fledging success is not associated with early-life telomere length, which may be due to the added influence of biparental care at this stage. Early-life telomere length does not predict lifespan or lifetime reproductive success in this species. Females may therefore change their reproductive allocation strategy depending on their early developmental conditions, which we hypothesise are reflected in their early-life telomere length. Our results offer new insights on the role that telomeres play in reproductive senescence and individual fitness and suggest telomere length can be used as a predictor for future life history in threatened species.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Longevidade , Aves Canoras/genética , Envelhecimento , Telômero/genética , Reprodução/genética , Encurtamento do Telômero/genética
4.
Science ; 379(6634): eadd2889, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821678

RESUMO

Extinct in the Wild (EW) species are placed at the highest risk of extinction under the International Union for Conservation of Nature Red List, but the extent and variation in this risk have never been evaluated. Harnessing global databases of ex situ animal and plant holdings, we report on the perilous state of EW species. Most EW animal species-already compromised by their small number of founders-are maintained at population sizes far below the thresholds necessary to ensure demographic security. Most EW plant species depend on live propagation by a small number of botanic gardens, with a minority secured at seed bank institutions. Both extinctions and recoveries are possible fates for EW species. We urgently call for international effort to enable the latter.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Jardins , Banco de Sementes , Animais , Plantas , Dinâmica Populacional
5.
Mol Ecol ; 32(8): 1893-1907, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36655901

RESUMO

For small and isolated populations, the increased chance of mating between related individuals can result in a substantial reduction in individual and population fitness. Despite the increasing availability of genomic data to measure inbreeding accurately across the genome, inbreeding depression studies for threatened species are still scarce due to the difficulty of measuring fitness in the wild. Here, we investigate inbreeding and inbreeding depression for the extensively monitored Tiritiri Matangi island population of a threatened Aotearoa New Zealand passerine, the hihi (Notiomystis cincta). First, using a custom 45 k single nucleotide polymorphism (SNP) array, we explore genomic inbreeding patterns by inferring homozygous segments across the genome. Although all individuals have similar levels of ancient inbreeding, highly inbred individuals are affected by recent inbreeding, which can probably be explained by bottleneck effects such as habitat loss after European arrival and their translocation to the island in the 1990s. Second, we investigate genomic inbreeding effects on fitness, measured as lifetime reproductive success, and its three components, juvenile survival, adult annual survival and annual reproductive success, in 363 hihi. We find that global inbreeding significantly affects juvenile survival but none of the remaining fitness traits. Finally, we employ a genome-wide association approach to test the locus-specific effects of inbreeding on fitness, and identify 13 SNPs significantly associated with lifetime reproductive success. Our findings suggest that inbreeding depression does impact hihi, but at different genomic scales for different traits, and that purging has therefore failed to remove all variants with deleterious effects from this population of conservation concern.


Assuntos
Depressão por Endogamia , Passeriformes , Humanos , Animais , Nova Zelândia , Estudo de Associação Genômica Ampla , Endogamia , Genômica , Polimorfismo de Nucleotídeo Único/genética , Homozigoto
6.
J Evol Biol ; 35(10): 1378-1386, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36117411

RESUMO

The shape and intensity of natural selection can vary between years, potentially resulting in a chronic reduction of fitness as individuals need to track a continually changing optimum of fitness (i.e., a "lag load"). In endangered species, often characterized by small population size, the lack of genetic diversity is expected to limit the response to this constant need to adjust to fluctuating selection, increasing the fitness burden and thus the risk of extinction. Here, we use long-term monitoring data to assess whether the type of selection for a key fitness trait (i.e., lay date) differs between two reintroduced populations of a threatened passerine bird, the hihi (Notiomystis cincta). We apply recent statistical developments to test for the presence or absence of fluctuation in selection in both the Tiritiri Matangi Island and the Karori sanctuary populations. Our results support the presence of stabilizing selection in Tiritiri Matangi with a potential moving optimum for lay date. In Karori our results favour a regime of directional selection. Although the shape of selection may differ, for both populations an earlier lay date generally increases fitness in both environments. Further, the moving optimum models of lay date on Tiritiri Matangi, suggesting that selection varies between years, imply a substantial lag load in addition to the fitness burden caused by the population laying too late. Our results highlight the importance of characterizing the form and temporal variation of selection for each population to predict the effects of environmental change and to inform management.


Assuntos
Passeriformes , Animais , Espécies em Perigo de Extinção , Passeriformes/genética , Fenótipo , Seleção Genética
7.
Science ; 376(6596): 1012-1016, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617403

RESUMO

The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.


Assuntos
Adaptação Biológica , Animais Selvagens , Evolução Biológica , Aptidão Genética , Adaptação Biológica/genética , Animais , Animais Selvagens/genética , Aves/genética , Conjuntos de Dados como Assunto , Variação Genética , Mamíferos/genética , Dinâmica Populacional , Seleção Genética
8.
Conserv Biol ; 36(4): e13892, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35171538

RESUMO

Conservation translocation is a common method for species recovery, for which one increasingly frequent objective is restoring lost ecological functions to promote ecosystem recovery. However, few conservation translocation programs explicitly state or monitor function as an objective, limiting the ability to test assumptions, learn from past efforts, and improve management. We evaluated whether translocations of hihi (Notiomystis cincta), a threatened New Zealand passerine, achieved their implicit objective of restoring lost pollination function. Through a pollinator-exclusion experiment, we quantified, with log response ratios (lnR), the effects of birds on fruit set and seed quality in hangehange (Geniostoma ligustrifolium), a native flowering shrub. We isolated the contributions of hihi by making comparisons across sites with and without hihi. Birds improved fruit set more at sites without hihi (lnR = 1.27) than sites with hihi (lnR = 0.50), suggesting other avian pollinators compensated for and even exceeded hihi contributions to fruit set. Although birds improved seed germination only at hihi sites (lnR = 0.22-0.41), plants at sites without hihi had germination rates similar to hihi sites because they produced 26% more filled seeds, regardless of pollination condition. Therefore, although our results showed hihi improved seed quality, they also highlighted the complexity of ecological functions. When an important species is lost, ecosystems may be able to achieve similar function through different means. Our results underscore the importance of stating and monitoring the ecological benefits of conservation translocations when functional restoration is a motivation to ensure these programs are achieving their objectives.


Evaluación del Éxito de la Restauración Funcional Posterior a la Reintroducción de un Ave Polinizadora Desaparecida Resumen La reubicación para la conservación es un método común para la recuperación de especies en el cual un objetivo cada vez más frecuente es la restauración de las funciones ecológicas que se perdieron para promover la recuperación del ecosistema. Sin embargo, pocos programas de reubicación para la conservación establecen o monitorean explícitamente a la función como un objetivo, lo que limita la posibilidad de comprobar suposiciones, aprender de esfuerzos anteriores y mejorar la gestión. Analizamos si las reubicaciones de hihi (Notiomystis cincta), un ave paseriforme amenazada de Nueva Zelanda, lograron el objetivo implícito de restaurar la desaparecida función de polinización. Mediante un experimento de exclusión del polinizador, cuantificamos con relaciones de respuesta logarítmica (lnR) los efectos de las aves sobre el conjunto de frutos y la calidad de la semilla del arbusto floral nativo Geniostoma ligustrifolium. Aislamos las contribuciones del hihi cuando comparamos entre sitios con y sin su presencia. Las aves favorecieron más al conjunto de frutos en sitios sin hihi (lnR = 1.27) que en los sitios con hihi (lnR = 0.50), lo que sugiere que otras aves polinizadoras compensaron y excedieron las contribuciones del hihi al conjunto de frutos. Aunque las aves aumentaron la germinación de semillas sólo en sitios con hihi (lnR = 0.22-0.41), las plantas en los sitios sin hihi tuvieron tasas de germinación similares a los sitios con hihi porque produjeron 26% más de semillas completas sin importar la condición de la polinización. Por lo tanto, aunque nuestros resultados mostraron mejoras en la calidad de la semilla a causa del hihi, también resaltaron la complejidad de las funciones ecológicas. Cuando desaparece una especie importante, puede que los ecosistemas logren una función similar por medio de diferentes métodos. Nuestros resultados hacen hincapié en la importancia que tiene establecer y monitorear los beneficios ecológicos de las reubicaciones para la conservación cuando la restauración es motivo para asegurar que estos programas están logrando sus objetivos.


Assuntos
Aves , Conservação dos Recursos Naturais , Ecossistema , Polinização , Animais , Nova Zelândia , Plantas
9.
Mol Ecol Resour ; 22(5): 1855-1867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34907643

RESUMO

Sample mix-ups occur when samples have accidentally been duplicated, mislabelled or swapped. When samples are subsequently genotyped or sequenced, this can lead to individual IDs being incorrectly linked to genetic data, resulting in incorrect or biased research results, or reduced power to detect true biological patterns. We surveyed the community and found that almost 80% of responding researchers have encountered sample mix-ups. However, many recent studies in the field of molecular ecology do not appear to systematically report individual assignment checks as part of their publications. Although checks may be done, lack of consistent reporting means that it is difficult to assess whether sample mix-ups have occurred or been detected. Here, we present an easy-to-follow sample verification framework that can utilise existing metadata, including species, population structure, sex and pedigree information. We demonstrate its application to a data set representing individuals of a threatened Aotearoa New Zealand bird species, the hihi, genotyped on a 50K SNP array. We detected numerous incorrect genotype-ID associations when comparing observed and genetic sex or comparing to relationships in a verified microsatellite pedigree. The framework proposed here helped to confirm 488 individuals (39%), correct another 20 bird-genotype links, and detect hundreds of incorrect sample IDs, emphasizing the value of routinely checking genetic and genomic data sets for their accuracy. We therefore promote the implementation and reporting of this simple yet effective sample verification framework as a standardized quality control step for studies in the field of molecular ecology.


Assuntos
Aves , Genoma , Genômica , Animais , Espécies em Perigo de Extinção , Genômica/métodos , Genótipo , Nova Zelândia , Linhagem , Polimorfismo de Nucleotídeo Único
10.
Mol Ecol Resour ; 22(1): 415-429, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34323011

RESUMO

Next-generation sequencing has transformed the fields of ecological and evolutionary genetics by allowing for cost-effective identification of genome-wide variation. Single nucleotide polymorphism (SNP) arrays, or "SNP chips", enable very large numbers of individuals to be consistently genotyped at a selected set of these identified markers, and also offer the advantage of being able to analyse samples of variable DNA quality. We used reduced representation restriction-aided digest sequencing (RAD-seq) of 31 birds of the threatened hihi (Notiomystis cincta; stitchbird) and low-coverage whole genome sequencing (WGS) of 10 of these birds to develop an Affymetrix 50 K SNP chip. We overcame the limitations of having no hihi reference genome and a low quantity of sequence data by separate and pooled de novo assembly of each of the 10 WGS birds. Reads from all individuals were mapped back to these de novo assemblies to identify SNPs. A subset of RAD-seq and WGS SNPs were selected for inclusion on the chip, prioritising SNPs with the highest quality scores whose flanking sequence uniquely aligned to the zebra finch (Taeniopygia guttata) genome. Of the 58,466 SNPs manufactured on the chip, 72% passed filtering metrics and were polymorphic. By genotyping 1,536 hihi on the array, we found that SNPs detected in multiple assemblies were more likely to successfully genotype, representing a cost-effective approach to identify SNPs for genotyping. Here, we demonstrate the utility of the SNP chip by describing the high rates of linkage disequilibrium in the hihi genome, reflecting the history of population bottlenecks in the species.


Assuntos
Passeriformes , Polimorfismo de Nucleotídeo Único , Animais , Nova Zelândia , Passeriformes/genética
11.
J Anim Ecol ; 90(12): 2915-2927, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545572

RESUMO

The art of population modelling is to incorporate factors essential for capturing a population's dynamics while otherwise keeping the model as simple as possible. However, it is unclear how optimal model complexity should be assessed, and whether this optimal complexity has been affected by recent advances in modelling methodology. This issue is particularly relevant to small populations because they are subject to complex dynamics but inferences about those dynamics are often constrained by small sample sizes. We fitted Bayesian hierarchical models to long-term data on vital rates (survival and reproduction) for the toutouwai Petroica longipes population reintroduced to Tiritiri Matangi, a 220-ha New Zealand island, and quantified the performance of those models in terms of their likelihood of replicating the observed population dynamics. These dynamics consisted of overall growth from 33 (±0.3) to 160 (±6) birds from 1992-2018, including recoveries following five harvest events for further reintroductions to other sites. We initially included all factors found to affect vital rates, which included inbreeding, post-release effects (PRE), density-dependence, sex, age and random annual variation, then progressively removed these factors. We also compared performance of models where data analysis and simulations were done simultaneously to those produced with the traditional two-step approach, where vital rates are estimated first then fed into a separate simulation model. Parametric uncertainty and demographic stochasticity were incorporated in all projections. The essential factors for replicating the population's dynamics were density-dependence in juvenile survival and PRE, i.e. initial depression of survival and reproduction in translocated birds. Inclusion of other factors reduced the precision of projections, and therefore the likelihood of matching observed dynamics. However, this reduction was modest when the modelling was done in an integrated framework. In contrast, projections were much less precise when done with a two-step modelling approach, and the cost of additional parameters was much higher under the two-step approach. These results suggest that minimization of complexity may be less important than accounting for covariances in parameter estimates, which is facilitated by integrating data analysis and population projections using Bayesian methods.


Assuntos
Conservação dos Recursos Naturais , Passeriformes , Animais , Teorema de Bayes , Dinâmica Populacional , Estudos Retrospectivos
12.
Mol Ecol ; 30(23): 6006-6020, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242449

RESUMO

Inbreeding can lead to a loss of heterozygosity in a population and when combined with genetic drift may reduce the adaptive potential of a species. However, there is uncertainty about whether resequencing data can provide accurate and consistent inbreeding estimates. Here, we performed an in-depth inbreeding analysis for hihi (Notiomystis cincta), an endemic and nationally vulnerable passerine bird of Aotearoa New Zealand. We first focused on subsampling variants from a reference genome male, and found that low-density data sets tend to miss runs of homozygosity (ROH) in some places and overestimate ROH length in others, resulting in contrasting homozygosity landscapes. Low-coverage resequencing and 50 K SNP array densities can yield comparable inbreeding results to high-coverage resequencing approaches, but the results for all data sets are highly dependent on the software settings employed. Second, we extended our analysis to 10 hihi where low-coverage whole genome resequencing, RAD-seq and SNP array genotypes are available. We inferred ROH and individual inbreeding to evaluate the relative effects of sequencing depth versus SNP density on estimating inbreeding coefficients and found that high rates of missingness downwardly bias both the number and length of ROH. In summary, when using genomic data to evaluate inbreeding, studies must consider that ROH estimates are heavily dependent on analysis parameters, data set density and individual sequencing depth.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Genômica , Genótipo , Homozigoto , Masculino , Nova Zelândia , Polimorfismo de Nucleotídeo Único/genética
13.
Oecologia ; 195(3): 627-640, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33646386

RESUMO

A key goal of ecological research is to obtain reliable estimates of population demographic rates, abundance and trends. However, a common challenge when studying wildlife populations is imperfect detection or breeding observation, which results in unknown survival status and reproductive output for some individuals. It is important to account for undetected individuals in population models because they contribute to population abundance and dynamics, and can have implications for population management. Promisingly, recent methodological advances provide us with the tools to integrate data from multiple independent sources to gain insights into the unobserved component of populations. We use data from five reintroduced populations of a threatened New Zealand bird, the hihi (Notiomystis cincta), to develop an integrated population modelling framework that allows missing values for survival status, sex and reproductive output to be modelled. Our approach combines parallel matrices of encounter and reproduction histories from marked individuals, as well as counts of unmarked recruits detected at the start of each breeding season. Integrating these multiple data types enabled us to simultaneously model survival and reproduction of detected individuals, undetected individuals and unknown (never detected) individuals to derive parameter estimates and projections based on all available data, thereby improving our understanding of population dynamics and enabling full propagation of uncertainty. The methods presented will be especially useful for management programmes for populations that are intensively monitored but where individuals are still imperfectly detected, as will be the case for most threatened wild populations.


Assuntos
Passeriformes , Reprodução , Animais , Cruzamento , Humanos , Nova Zelândia , Dinâmica Populacional
14.
Conserv Biol ; 35(4): 1162-1173, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33034391

RESUMO

Ko koe ki tena, ko ahau ki tenai kiwai o te kete (you at that, and I at this handle of the basket). This Maori (New Zealanders of indigenous descent) saying conveys the principle of cooperation-we achieve more through working together, rather than separately. Despite decades of calls to rectify cultural imbalance in conservation, threatened species management still relies overwhelmingly on ideas from Western science and on top-down implementation. Values-based approaches to decision making can be used to integrate indigenous peoples' values into species conservation in a more meaningful way. We used such a values-based method, structured decision making, to develop comanagement of pekapeka (Mystacina tuberculata) (short-tailed bat) and tara iti (Sternula nereis davisae) (Fairy Tern) between Maori and Pakeha (New Zealanders of European descent). We implemented this framework in a series of workshops in which facilitated discussions were used to gather expert knowledge to predict outcomes and make management recommendations. For both species, stakeholders clearly stated their values as fundamental objectives from the start, which allowed alternative strategies to be devised that naturally addressed their diverse values, including matauranga Maori (Maori knowledge and perspectives). On this shared basis, all partners willingly engaged in the process, and decisions were largely agreed to by all. Most expectations of conflicts between values of Western science and Maori culture were unfounded. Where required, positive compromises were made by jointly developing alternative strategies. The values-based process successfully taha wairua taha tangata (brought both worlds together to achieve the objective) through codeveloped recovery strategies. This approach challenges the traditional model of scientists first preparing management plans focused on biological objectives, then consulting indigenous groups for approval. We recommend values-based approaches, such as structured decision making, as powerful methods for development of comanagement conservation plans between different peoples.


Aplicación de un Proceso de Decisiones Basadas en Valores para Facilitar el Comanejo de Especies Amenazadas en Aotearoa Nueva Zelanda Resumen Ko koe ki tena, ko ahau ki tenai kiwai o te kete (tú en ésa y yo en esta asa de la cesta). Este dicho Maori (neozelandeses con ascendencia indígena) expresa el principio de la cooperación - logramos más trabajando juntos que por separado. A pesar de las décadas de peticiones para rectificar el desbalance ambiental que existe en la conservación, el manejo de especies amenazadas todavía depende abrumadoramente de ideas tomadas de la ciencia occidental y en la implementación de arriba-abajo. Los enfoques para la toma de decisiones basados en valores pueden usarse para integrar de manera más significativa los valores de los pueblos indígenas dentro de la conservación de especies. Usamos un método basado en valores, la toma estructurada de decisiones, para desarrollar una estrategia de comanejo del pekapeka (Mystacina tuberculata) (murciélago de cola corta) y el tara iti (Sternula nereis davisae) (charrancito australiano) entre los Maori y los Pakeha (neozelandeses de ascendencia europea). Implementamos este marco de trabajo en una serie de talleres en los cuales se usaron discusiones facilitadas para recabar el conocimiento de los expertos para pronosticar los resultados y realizar recomendaciones de manejo. Para ambas especies, los actores sociales mencionaron claramente a sus valores como objetivos fundamentales desde el inicio, lo que permitió el diseño de estrategias alternativas que consideraran naturalmente estos diferentes valores, incluyendo el matauranga Maori (conocimiento y perspectivas Maori). Sobre esta base compartida, todos los colaboradores participaron voluntariamente en el proceso y la mayoría estuvo de acuerdo con las decisiones. La mayoría de los conflictos esperados entre la ciencia occidental y la cultura Maori no tuvieron fundamentos. En donde fueron requeridos, se realizaron concesiones positivas mediante el desarrollo conjunto de estrategias alternativas. El proceso basado en valores logró exitosamente taha wairua taha tangata (juntó a ambos mundos para conseguir el objetivo) por medio de estrategias de recuperación desarrolladas en conjunto. Esta estrategia desafía el modelo tradicional de los científicos preparando primero los planes de manejo enfocados en objetivos biológicos para después consultar a los grupos indígenas para que los aprueben. Recomendamos estos enfoques basados en valores, como la toma estructurada de decisiones, como métodos poderosos para el desarrollo de planes de conservación que incluyan el comanejo entre diferentes pueblos y personas.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Humanos , Nova Zelândia , Grupos Populacionais
15.
Conserv Biol ; 35(3): 859-869, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32997349

RESUMO

Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.


Uso de Datos a Largo Plazo de una Población Reintroducida para Estimar Empíricamente las Consecuencias Futuras de la Endogamia Resumen La depresión endogámica es una amenaza importante a largo plazo para las poblaciones reintroducidas. Sin embargo, es complicado estimar la fuerza de la depresión endogámica en las poblaciones silvestres porque los datos sobre el linaje sin duda estarán incompletos y porque se necesitan datos sólidos sobre la supervivencia y la reproducción. Es especialmente difícil predecir las consecuencias poblacionales a futuro pues esto requiere proyectar a futuro los niveles de endogamia y sus impactos sobre las dinámicas poblacionales a largo plazo, las cuales están sujetas a muchas incertidumbres. Ilustramos cómo dichas proyecciones pueden derivarse mediante métodos de modelado bayesiano de estado-espacio basados en un conjunto de datos obtenidos durante 26 años para los tordos de la Isla del Norte (Petroica longipes) reintroducidos a la isla Tiritiri Matangi en 1992. Usamos datos de linaje para modelar los incrementos en el nivel promedio de endogamia ( F̲ ) a lo largo del tiempo con base en el parentesco de las posibles parejas reproductoras y para estimar empíricamente Ne/N (tamaño poblacional efectivo/por censo). Usamos una imputación múltiple para modelar los componentes desconocidos de los coeficientes de endogamia, lo que nos permitió estimar los efectos de la endogamia sobre la supervivencia para todas las aves (1458) incluidas en el conjunto de datos a la vez que modelamos la dependencia de la densidad y la estocasticidad ambiental. Este modelado indicó que la endogamia redujo la supervivencia juvenil (1.83 equivalentes letales [SE 0.81]) y podría haber reducido la subsecuente supervivencia adulta (0.44 equivalentes letales [0.81]) pero no tuvo un efecto aparente sobre los números de polluelos producidos. El nivel promedio de endogamia incrementó a 0.10 (SE 0.001) conforme la población creció de 33 (0.3) a 160 (6) individuos a lo largo de los 25 años, lo que resultó en una proporción Ne/N de 0.56 (0.01). Con base en un modelo que también incorporó la regeneración del hábitat, se proyectó que la población alcanzaría un máximo de 331-1144 aves (mediana: 726) para 2130 y después comenzaría una lenta disminución. Sin la endogamia, se esperaría que la población se estabilizaría con 887-1465 (mediana: 1131) aves. Por lo tanto, dicho análisis hace posible la derivación empírica de la información necesaria para las decisiones racionales sobre el manejo de la endogamia a la vez que considera a varias fuentes de incertidumbre.


Assuntos
Conservação dos Recursos Naturais , Endogamia , Animais , Teorema de Bayes , Humanos , Linhagem , Densidade Demográfica , Dinâmica Populacional
16.
Proc Biol Sci ; 287(1939): 20201878, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234077

RESUMO

Early independence from parents is a critical period where social information acquired vertically may become outdated, or conflict with new information. However, across natural populations, it is unclear if newly independent young persist in using information from parents, or if group-level effects of conformity override previous behaviours. Here, we test if wild juvenile hihi (Notiomystis cincta, a New Zealand passerine) retain a foraging behaviour from parents, or if they change in response to the behaviour of peers. We provided feeding stations to parents during chick-rearing to seed alternative access routes, and then tracked their offspring's behaviour. Once independent, juveniles formed mixed-treatment social groups, where they did not retain preferences from their time with parents. Instead, juvenile groups converged over time to use one access route- per group, and juveniles that moved between groups switched to copy the locally favoured option. Juvenile hihi did not copy specific individuals, even if they were more familiar with the preceding bird. Our study shows that early social experiences with parents affect initial foraging decisions, but social environments encountered later on can update transmission of arbitrary behaviours. This suggests that conformity may be widespread in animal groups, with potential cultural, ecological and evolutionary consequences.


Assuntos
Comportamento Alimentar/fisiologia , Aves Canoras/fisiologia , Animais , Aprendizagem/fisiologia , Nova Zelândia , Passeriformes/fisiologia , Comportamento Social , Meio Social
18.
Proc Biol Sci ; 287(1933): 20200948, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32842928

RESUMO

To predict if a threatened species can adapt to changing selective pressures, it is crucial to understand the genetic basis of adaptive traits, especially in species historically affected by severe bottlenecks. We estimated the heritability of three hihi (Notiomystis cincta) morphological traits known to be under selection (nestling tarsus length, body mass and head-bill length) using 523 individuals and 39 699 single nucleotide polymorphisms (SNPs) from a 50 K Affymetrix SNP chip. We then examined the genetic architecture of the traits via chromosome partitioning analyses and genome-wide association scans (GWAS). Heritabilities estimated using pedigree relatedness or genomic relatedness were low. For tarsus length, the proportion of genetic variance explained by each chromosome was positively correlated with its size, and more than one chromosome explained significant variation for body mass and head-bill length. Finally, GWAS analyses suggested many loci of small effect contributing to trait variation for all three traits, although one locus (an SNP within an intron of the transcription factor HEY2) was tentatively associated with tarsus length. Our findings suggest a polygenic nature for the morphological traits, with many small effect size loci contributing to the majority of the variation, similar to results from many other wild populations. However, the small effective population size, polygenic architecture and already low heritabilities suggest that both the total response and rate of response to selection are likely to be limited in hihi.


Assuntos
Evolução Biológica , Passeriformes , Animais , Cromossomos , Estudo de Associação Genômica Ampla , Genômica , Modelos Genéticos , Herança Multifatorial , Nova Zelândia , Linhagem , Fenótipo
19.
Animals (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835670

RESUMO

Human activity affecting the welfare of wild vertebrates, widely accepted to be sentient, and therefore deserving of moral concern, is widespread. A variety of motives lead to the killing of individual wild animals. These include to provide food, to protect stock and other human interests, and also for sport. The acceptability of such killing is widely believed to vary with the motive and method. Individual vertebrates are also killed by conservationists. Whether securing conservation goals is an adequate reason for such killing has recently been challenged. Conventional conservation practice has tended to prioritise ecological collectives, such as populations and species, when their interests conflict with those of individuals. Supporters of the 'Compassionate Conservation' movement argue both that conservationists have neglected animal welfare when such conflicts arise and that no killing for conservation is justified. We counter that conservationists increasingly seek to adhere to high standards of welfare, and that the extreme position advocated by some supporters of 'Compassionate Conservation', rooted in virtue ethics, would, if widely accepted, lead to considerable negative effects for conservation. Conservation practice cannot afford to neglect consequences. Moreover, the do-no-harm maxim does not always lead to better outcomes for animal welfare.

20.
Philos Trans R Soc Lond B Biol Sci ; 374(1781): 20190373, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31352895

RESUMO

There is growing recognition that variation in animal personality traits can influence survival and reproduction rates, and consequently may be important for wildlife population dynamics. Despite this, the integration of personality research into conservation has remained uncommon. Alongside the establishment of personality as an important source of individual variation has come an increasing interest in factors affecting the development of personality. Recent work indicates the early environment, including natal nutrition, may play a stronger role in the development of personality than previously thought. In this study, we investigated the importance of three personality metrics (activity, boldness and acclimation time) for estimating survival of a threatened species, the hihi (Notiomystis cincta), and evaluated the influence of early natal nutrition on those metrics. Our results showed that boldness (as measured from a one-off cage test) had a positive effect on the probability of juvenile hihi surviving to adulthood. There was also a tendency for juveniles that received carotenoid supplementation in the nest to be bolder than those that did not, suggesting that the early environment had some influence on the expression of boldness in juvenile hihi. Linking the development of personality traits with ultimate effects on vital rates may benefit conservation management, as it could enable developmentally targeted management interventions. To our knowledge, this study is the first to identify potential linkages between early natal nutrition, personality and fitness in a wild-living population. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Longevidade , Personalidade , Aves Canoras/fisiologia , Animais , Espécies em Perigo de Extinção , Comportamento Exploratório , Feminino , Masculino , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...